Abstract

Highly conductive MXene material exhibits outstanding dissipation capability of electromagnetic (EM) waves. However, the interfacial impedance mismatch due to high reflectivity restricts the application of MXene-based EM wave absorbing materials. Herein, a direct ink writing (DIW) 3D printing strategy to construct lightweight and stiff MXene/graphene oxide aerogels (SMGAs) with controllable fret architecture is demonstrated, exhibiting tunable EM wave absorption properties by manipulating impedance matching. Noteworthy, the maximum reflection loss variation value (ΔRL) of SMGAs is -61.2 dB by accurately modulating the width of the fret architecture. The effective absorption region (fE) of SMGAs exhibits consecutive multiband tunability, and the broadest tunable fE (Δf) is 14.05 GHz, which could be continuously tuned in the whole C- (4-8 GHz), X- (8-12 GHz), and Ku-bands (12-18 GHz). Importantly, the hierarchical structures and the orderly stacking of filaments endow lightweight SMGAs (0.024 g cm-3) with a surprising compression resistance, which can withstand 36 000 times its own weight without obvious deformation. Finite element analysis (FEA) further indicates that the hierarchical structure facilitates stress dispersion. The strategy developed here provides a method for fabricating tunable MXene-based EM wave absorbers that are lightweight and stiff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.