Abstract

The topological protected magnetic state, which plays a pivotal role against any continuous deformation of a magnetic skyrmion, comes with an unwanted skyrmion Hall effect (SkHE) that poses a significant challenge in practical applications. Here, we present a detailed micromagnetic simulation study that delves into the controlled manipulation of skyrmion dynamics through subtle engineering of the Dzyaloshinskii–Moriya interaction (DMI) in a hybrid skyrmion-based racetrack. In particular, we introduce a gradient variation of bulk and interfacial DMIs, which results in a parabolic trajectory of the skyrmion motion, thereby allowing us to find a critical DMI ratio with almost zero SkHE. Most importantly, we present a novel approach involving the engineering of a racetrack with strategically placed step DMI regions that gives us meticulous control over the size and speed of the hybrid skyrmions. The present study gives a new direction for the simultaneous realization of stable skyrmions without SkHE and an increased skyrmion speed with optimized DMI engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.