Abstract

Prolonging the lifetime of photoinduced hot carriers in lead-halide perovskite quantum dots (QDs) is highly desirable because it can help improve the photovoltaic conversion efficiency. Ligand engineering has recently become a promising strategy to achieve this; nevertheless, mechanistic studies in this field remain limited. Herein, we propose a new scenario of ligand engineering featuring Pb2+/Br- site-selective capping on the surface of CsPbBr3 QDs. Through joint observations of temperature-dependent photoluminescence, ultrafast transient absorption, and Raman spectroscopy of the two contrasting model systems of CsPbBr3 QDs (i.e., capping with organic ligand only vs hybrid organic/inorganic ligands), we reveal that the phononic regulation of Pb-Br stretching at the Br-site (relative to Pb-site) leads to a larger suppression of charge-phonon coupling due to a stronger polaronic screening effect, thereby more effectively retarding the hot-carrier cooling process. This work opens a new route for the manipulation of hot-carrier cooling dynamics in perovskite systems via site-selective ligand engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call