Abstract

Faraday rotation is a fundamental magneto-optical phenomenon used in various optical control and magnetic field sensing techniques. Recently, it was shown that a giant Faraday rotation can be achieved in the low-THz regime by a single monoatomic graphene layer. Here, we demonstrate that this exceptional property can be manipulated through adequate nano-patterning, notably achieving giant rotation up to 6THz with features no smaller than 100 nm. The effect of the periodic patterning on the Faraday rotation is predicted by a simple physical model, which is then verified and refined through accurate full-wave simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.