Abstract

We report a numerical study of a reconfigurable topological waveguide based on honeycomb-lattice elastic phononic crystals (EPCs) which consist of two kinds of cavities filled with water. We can realize the EPCs with different symmetries by adjusting the water depth of the cavities, and obtain a Dirac cone for the EPCs composed of the cavities with the same water depth, in which the Dirac frequency can be modulated by adjusting the water depth. When the water depths of the cavities are different, the inversion symmetry of the EPC is broken, destroying the two-fold degeneracy of the Dirac point, and opening an omnidirectional bandgap. Based on EPC-I and EPC-II with opposite valley Hall phases, we design a valley topological waveguide of elastic wave, and obtain valley edge states in the domain wall (DW). Importantly, by adjusting the water depths, we can achieve the conversion between EPC-I and EPC-II, and realize arbitrary DWs for the propagations of elastic waves in the topological waveguide. Finally, we discuss an interesting application of a path-selective waveguide based on a linear interference mechanism. The designed reconfigurable topological waveguide provides an effective method to manipulate valley topological transports of elastic waves, and a theoretical basis for designing advanced topological devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.