Abstract

Recent advancement of network and communication technologies has raised expectations for transmission of multi-sensory information and multi-modal communication. Transmission of haptic sensation has been a topic of research in tele-robotics for a long period. However, as commercial haptic device prevails, and as internet spreads world-wide, it became possible to exchange haptic information for more general communication in our daily life. Although a variety of information is transmitted through haptic sensation, the feeling of a soft object is one that is difficult to transmit through other sensations. This is because the feeling of softness is represented only by integrating both the sense of deformation by somatic sensation and intensity force by haptic sensation. Feeling of softness is apt to be considered as static information that represents static relationship between deformation and force. Our previous study on implementing a static deformation model suggested that the dynamic aspect of deformation has an important effect on the reality of interactions. A static model can not represent behavior of an object while the user is not interacting with the object. For example, it is unnatural that an object model immediately returns to its original shape just after user releases hand or finger. Also, resonant vibration of object during the interaction is often perceived through haptic sensation. These differences of dynamic model from static model are considered to become more recognizable to user as more freedom of interaction is given. In this chapter, an outline of our approach to implement a deformable model that is capable of representing dynamic response of deformation is presented. Supplemental idea that realizes non-grounded motion of the deformable model is also stated; manipulation of deformable object becomes possible by this idea. In the next section, a survey of background research is 16

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.