Abstract

Currently, the quest for more renewable and biodegradable materials is a scientific priority to address the problems of petroleum-based plastics are difficult to degrade. In this work, cellulose nanocrystals (CNC) have been used as a template and four morphologies of CNC-ZnO nanocomposites were prepared via a hydrothermal method, and CNC-ZnO/polylactic acid (PLA) composite films were obtained by solution casting. We find that CNC-ZnO nanocomposites as heterogeneous nucleating agents improved the crystallinity and the film with flower-like CNC-ZnO was improved by 2.4 %. Ea required for thermal degradation of the PLA films decreased to 66–81 % of that of neat PLA, calculated by the Kissinger method, the Friedman method, and the Flynn-Wall-Ozawa (FWO) method. The R2 model was the solid degradation mechanism of the PLA films, analyzed through the Coats-Redfern method and the Criado method. The H-bond content of the composite films was significantly reduced after thermal aging at 150 °C. We found that three-dimensional CNC-ZnO (ZnO-3) made more prominent contributions to the crystallization, thermal degradation, and thermal aging of PLA films than other dimensional. The thermal properties can be regulated by the dimension, size, and apparent morphology of CNC-ZnO nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call