Abstract

Manipulation techniques are the key to measuring fundamental properties of layered materials and their monolayers (2D materials) on the micro- and nanoscale as well as a necessity to the solution of relevant existing challenges. An example is the challenge against upscaling structural superlubricity, a phenomenon of near-zero friction and wear in solid contacts. To date, the largest single structural superlubric contact only has a size of a few tens of micrometers, which is achieved on graphite mesa, a system that has shown microscale superlubricity. The first obstacle against extending the contact size is the lack of suitable manipulation techniques. Here, a micro-dome technique is demonstrated on graphite mesas by shearing contacts 2500 times larger in area than previously possible. With this technique, submillimeter graphite mesas are opened, characterized for the first time, and compared to their microscale counterparts. Interfacial structures, which are possibly related to the failure of superlubricity, are observed: commensurate grains, external steps, and carbon aggregates. Furthermore, a proof-of-concept mechanical model is developed to understand how the micro-dome technique works and to predict its limits. Finally, a dual-axis force measuring device is developed and integrated with the micro-dome technique to measure the normal and lateral forces when shearing submillimeter mesas. These results provide a platform technique for future research on structural superlubricity on different scales and manipulation of structures of layered materials in general.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call