Abstract

Observers can learn to move in novel, adapted environments after watching a learning or expert model. Although this is an effective practice technique, it is unclear how this learning is achieved and if observers update an internal model of their visual-motor environment, as shown through the presence of after-effects (i.e., negative carry-over effects when aiming in a normal environment following exposure to perturbed conditions). For such updating to occur via observational practice, it has been reasoned that the observer requires the motor capabilities to perform the task they are observing. To test this, we first trained three groups to physically move in clockwise (CW) or counterclockwise (CCW) rotated environments. When immediately returned to a normal environment, after-effects were seen. We then attempted to wash out these effects before allowing two of these groups (CW and CCW), and a naïve observation only group, to watch a video of an actor performing in a CW environment. This observation phase was immediately followed by another test for after-effects and a direct test of learning when aiming in the rotated environment. Consistent with previous data, there were direct learning effects due to observation. Although after-effects increased for the experienced observers, these were small and were not significantly different from a physical practice only group that did not undergo the observation phase. Therefore, even with a motor repertoire for the rotated environment, there was a lack of evidence that observational practice results in implicit (re)updating of an internal model for aiming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call