Abstract

The phonon thermal conductivities of misfit-layered Ca3Co4O9, Sr3Co4O9, and Ba3Co4O9 were calculated using the perturbed molecular dynamics method to clarify the impact of lattice misfit on the phonon thermal conduction in misfit-layered cobaltites. Substitution of Sr and Ba for Ca substantially modified the magnitude of the lattice misfit between the CoO2 and rock salt (RS) layers, because of the different ionic radii, increasing overall phonon thermal conductivity. Further analyses with intentionally changed atomic masses of Ca, Sr, or Ba revealed that smaller ionic radius at the Ca site in the RS layer, instead of heavier atomic mass, is a critical factor suppressing the overall thermal conductivity of Ca3Co4O9, since it determines not only the magnitude of lattice misfit but also the dynamic interference between the two layers, which governs the phonon thermal conduction in the CoO2 and RS layers. This concept was demonstrated for Sr-doped Ca3Co4O9 as an example of atomistic manipulation for better thermoelectric properties. Phonon thermal conductivities not only in the RS layer but also in the CoO2 layer were reduced by the substitution of Sr for Ca. These results provide another strategy to improve the thermal conductivity of this class of misfit cobaltites, that is, to control the thermal conductivity of the CoO2 layer responsible for electronic and thermal conductivity by atomistic manipulation in the RS layer adjacent to the CoO2 layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.