Abstract

Cobalt-boron nanoparticles have been synthesized by a chemical reaction between NaBH4 and CoCl2.6H2O through manipulating pH value of the reaction mixture. The morphology, structure, phase composition, and thermal behavior have been examined via FESEM, TEM, XRD, EDS, and DSC techniques, respectively. It is demonstrated that the morphology and structure of ultimate nanoparticles completely depends on the pH value of reaction mixture. While the neutral pH value favors the smallest nanoparticles with a mean particle size of 50 nm and complete amorphous structure, the acidic condition promotes the growth process and the crystal structure. Furthermore, these nanoparticles transform into cobalt nanocrystallites after heated at 600°C, and retained the discrepancies in the morphology and the structure of the parent cobalt-boron nanoparticles. A detailed characterization of the nanoparticulates, discussions on the synthesis mechanism, and subsequent formation transformation have been provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.