Abstract

Provided here is evidence showing that the stacking between triplet chromophores plays a critical role in ultralong organic phosphorescence (UOP) generation within a crystal. By varying the structure of a functional unit, and different on-off UOP behavior was observed for each structure. Remarkably, 24CPhCz, having the strongest intermolecular interaction between carbazole units exhibited the most impressive UOP with a long lifetime of 1.06 s and a phosphorescence quantum yield of 2.5 %. 34CPhCz showed dual-emission UOP and thermally activated delayed fluorescence (TADF) with a moderately decreased phosphorescence lifetime of 770 ms, while 35CPhCz only displayed TADF owing to the absence of strong electronic coupling between triplet chromophores. This study provides an explanation for UOP generation in crystal and new guidelines for obtaining UOP materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call