Abstract

Manipulating the redistribution of single dopant among multiple crystallographic sites can optimize and design luminescence materials for single-doped warm white phosphor with high color rendering. However, successful cases are barely reported, because the substitution of all sites and the warm white emitting of multiemission bands cannot be guaranteed. Herein, we synthesized a series of Ba4Gd3(K1-xNax)3(PO4)6F2:Eu2+ (0 ≤ x ≤ 1.0) solid solutions via crystal-site engineering approach to manipulate the redistribution of Eu2+ dopant for tunable photoluminescence property. Na+ ions preferentially substitution in the A and B columns along the c-axis direction gives rise to the anisotropic lattice shrinkage. The multiemission bands of Ba4Gd3(K1-xNax)3(PO4)6F2:Eu2+ phosphors almost cover the whole visible light range because Eu2+ dopant can occupy the M(1), Gd(2) and A(3) sites. The Na-substitution results in a redistribution of Eu2+ dopants among different cation sites, and induces a continuous increase of the relative emission intensities at longer wavelength with increasing Na+ doping content. Moreover, the unique optical feature enables the single-phased Ba4Gd3Na3(PO4)6F2:Eu2+ phosphor converted WLED to exhibit quite high color rendering index (Ra = 90.2) and moderate correlated color temperature (CCT = 4125 K). The manipulating the redistribution of single dopant via crystal-site engineering approach reported here can not only carve out a new avenue for warm WLEDs, but also be applied to develop novel potential phosphors for practical optical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call