Abstract

We investigate the chemical and structural configuration of acetophenone on Si(0 0 1) using synchrotron radiation core-level spectroscopy techniques and density functional theory calculations. Samples were prepared by vapour phase dosing of clean Si(0 0 1) surfaces with acetophenone in ultrahigh vacuum. Near edge x-ray absorption fine structure spectroscopy and photoelectron spectroscopy measurements were made at room temperature as a function of coverage density and post-deposition anneal temperature. We show that the dominant room temperature adsorption structure lies flat on the substrate, while moderate thermal annealing induces the breaking of Si-C bonds between the phenyl ring and the surface resulting in the reorientation of the adsorbate into an upright configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call