Abstract
The mechanism of electric field (EF) effects on the magnetocrystalline anisotropy (MCA) in metallic films is investigated by first-principles calculations. Start with a simple system of Fe, Co and Ni monolayer on Cu(001) substrate, we show that the key factor for a large EF-induced MCA modification is that the energy bands cross of d3z2−r2 and dyz (or dxz and dxy) is close to the Fermi level. In order to enhance the MCA modification by EF, 4d metal substrates (Rh, Pd) are also discussed. In particular, we find that the magnetization direction can be switched from out-of-plane to in-plane by a small EF for Fe1–xCox alloy films on Rh(001) substrate with x=0.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.