Abstract

Morphology instability holds the major responsibility for efficiency degradation of organic solar cells (OSCs). However, how to develop polymer donors simultaneously with high efficiency and excellent morphology stability remains challenging. Herein, we reported naphtho[2,1-b:3,4-b']dithiophene-5,6-imide (NDTI)-based new polymers PNDT1 and PNDT2. The alkyl chain engineering leads to high crystallinity, high hole mobility (>10-3 cm2 V-1 S-1), and nanofibrous film morphology, which enable PNDT2 to exhibit an efficiency of 18.13% and a remarkable FF value of 0.80. Moreover, the NDTIs have short π-π stacking and abundant short interactions, and their polymers exhibit superior morphological stability. Therefore, the PNDT2-based OSCs exhibit much better device stability than that of PNDT1, PAB-α, and benchmark polymers PM6 and D18. This work suggests the great importance of the large conjugated backbone of the monomer and alkyl chain engineering to develop high-performance and morphology-stable polymers for OSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.