Abstract

Manipulation of multi-functions in molecular materials is promising for future switching and memory devices, although it is currently difficult. Herein, we assembled the asymmetric {Fe2 Co} unit into a cyanide-bridged mixed-valence chain {[(Tp)Fe(CN)3 ]2 Co(BIT)} ⋅ 2CH3 OH (1) (Tp=hydrotris(pyrazolyl)borate and BIT=3,4-bis-(1H-imidazol-1-yl)thiophene), which showed reversible multi-phase transitions accompanied by photo-switchable single-chain magnet properties and a dielectric anomaly. Variable-temperature X-ray structural studies revealed thermo- and photo-induced selective electron transfer (ET) between the Co and one of the Fe ions. Alternating-current magnetic susceptibility studies revealed that 1 displayed on and off single-chain magnet behavior by alternating 946-nm and 532-nm light irradiation. A substantial anomaly in the dielectric constant was discovered during the electron transfer process, which is uncommon in similar ET complexes. These findings illustrate that 1 provided a new platform for multi-phase transitions and multi-switches adjusted by selective metal-to-metal ET.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call