Abstract

We study creation of bi- and multipartite continuous variable entanglement in structures of coupled quantum harmonic oscillators. By adjusting the interaction strengths between nearest neighbors we show how to maximize the entanglement production between the arms in a Y-shaped structure where an initial single mode squeezed state is created in the first oscillator of the input arm. We also consider the action of the same structure as an approximate quantum cloner. For a specific time in the system dynamics the last oscillators in the output arms can be considered as imperfect copies of the initial state. By increasing the number of arms in the structure, multipartite entanglement is obtained, as well as 1 to M cloning. Finally, we are considering configurations that implement the symmetric splitting of an initial entangled state. All calculations are carried out within the framework of the rotating wave approximation in quantum optics, and our predictions could be tested with current available experimental techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call