Abstract

Multiferroic materials, known for their multiple tunable orders, present an exceptional opportunity to manipulate nonlinear optical responses that are sensitive to symmetry. In this study, we propose leveraging electric and magnetic fields to selectively control and switch specific types of photogalvanic effects in two-dimensional multiferroic breathing kagome materials. Taking monolayer Nb3I8 as an example, we demonstrate that the shift current, characterized by the real-space shift of electrons and holes, is predominantly unaffected by magnetic order. In contrast, injection current, featured by quantum metric dipole in momentum space, is closely related to valley polarization, which can be controlled by a magnetic field. Furthermore, both photocurrents can be reversed by an out-of-plane electric field via lattice breathing. Our findings reveal the potential of multiferroic breathing kagome structures for multifunctional optoelectronic applications and sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.