Abstract
This review examines the current understanding of the structural, functional and regulatory properties of C4 and C3 forms of higher plant phosphoenolpyruvate carboxylase. The emphasis is on the interactive metabolic and post-translational controls acting on the enzyme in the physiological context of C4 photosynthesis and the anaplerotic pathway. A brief overview is given concerning the recent developments of PEPC-based genetic engineering of C3 plants with the aim of improving photosynthetic performance in normal and limiting environmental conditions. So far, in spite of achieving a considerable increase in PEPC levels, more work needs to be done with respect to the correct dosage and location before that goal is reached. Some unpublished results on the transformation of maize with a sorghum C4 PEPC cDNA are also presented. They show that it is possible to increase photosynthetic PEPC levels in this C4 plant and that the modification in enzyme content has a pleiotropic physiological impact and, notably, an improved water use efficiency when water is limited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.