Abstract
In recent years, various transition metal compounds have been extensively studied to deal with the problems of slow reaction kinetics and the shuttle effect of lithium-sulfur (Li-S) batteries. Nevertheless, their catalytic performance still needs to be further improved by enhancing intrinsic catalytic activity and enriching active sites. Doping is an effective means to boost the catalytic performance through adjusting the electron structure of the catalysts. Herein, the electron structure of CoSe2 is adjusted by doping P, S with different p electron numbers and electronegativity. After S doping (S-CoSe2), the content of Co2+ increases, and charge is redistributed. Furthermore, more electrons are transferred between Li2S4/Li2S and S-CoSe2, and optimal Co-S bonds are formed between them with optimized d-p orbital hybridization, making the bonds of Li2S4/Li2S the longest and easy to break and decompose. Consequently, the Li-S batteries with the S-CoSe2-modified separator achieve improved rate performance and cycling performance, benefiting from the better bidirectional catalytic activity. This work will provide reference for the selection of the anion doping element to enhance the catalytic effect of transition metal compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.