Abstract
Form follows function throughout the development of an organism. This principle should apply beyond the organism to the nests they build, but empirical studies are lacking. Honeybees provide a uniquely suited system to study nest form and function throughout development because we can image the three-dimensional structure repeatedly and non-destructively. Here, we tracked nest-wide comb growth in six colonies over 45 days (control colonies) and found that colonies have a stereotypical process of development that maintains a spheroid nest shape. To experimentally test if nest structure is important for colony function, we shuffled the nests of an additional six colonies, weekly rearranging the comb positions and orientations (shuffled colonies). Surprisingly, we found no differences between control and shuffled colonies in multiple colony performance metrics-worker population, comb area, hive weight and nest temperature. However, using predictive modelling to examine how workers allocate comb to expand their nests, we show that shuffled colonies compensate for these disruptions by accounting for the three-dimensional structure to reconnect their nest. This suggests that nest architecture is more flexible than previously thought, and that superorganisms have mechanisms to compensate for drastic architectural perturbations and maintain colony function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.