Abstract
The phenomenon of ordered self-assembly on solid substrates is a topic of interest in both fundamental surface science research and its applications in nanotechnology. The regulation and control of two-dimensional (2D) self-assembled supra-molecular structures on surfaces have been realized through applying external stimuli. By utilizing scanning tunneling microscopy (STM), researchers can investigate the detailed phase transition process of self-assembled monolayers (SAMs), providing insight into the interplay between intermolecular weak interactions and substrate-molecule interactions, which govern the formation of molecular self-assembly. This review will discuss the structural transition of self-assembly probed by STM in response to external stimuli and provide state-of-the-art methods such as tip-induced confinement for the alignment of SAM domains and selective chirality. Finally, we discuss the challenges and opportunities in the field of self-assembly and STM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.