Abstract

The dawn of the 21st century has brought with it an increasing interest in emulating the adaptive finesse of natural systems by designing materials with on-demand, tunable properties. The creation of such responsive systems could be expected, based on historical precedent, to lead to completely new engineering design paradigms. Using a bioinspired approach of coupling multiple equilibria that operate on different length scales, a material whose bulk mechanical properties can be manipulated by electrical input has been developed. The new macroscale electroplastic elastomer hydrogels can be reversibly cycled through soft and hard states while maintaining a three-dimensional shape by sequential application of oxidative and reductive potentials. This input changes the cross-linking capacity of iron ions within the gel matrix, between a poorly coordinating +2 and a more strongly binding +3 oxidation state. Inclusion of carbon nanotubes in the hydrogel preparation increases conductivity and decreases transition time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.