Abstract

AbstractStructural evolution of the cathode during cycling plays a vital role in the electrochemical performance of sodium‐ion batteries. A strategy based on engineering the crystal structure coupled with chemical substitution led to the design of the layered P2@P3 integrated spinel oxide cathode Na0.5Ni0.1Co0.15Mn0.65Mg0.1O2, which shows excellent sodium‐ion half/full battery performance. Combined analyses involving scanning transmission electron microscopy with atomic resolution as well as in situ synchrotron‐based X‐ray absorption spectra and in situ synchrotron‐based X‐ray diffraction patterns led to visualization of the inherent layered P2@P3 integrated spinel structure, charge compensation mechanism, structural evolution, and phase transition. This study provides an in‐depth understanding of the structure‐performance relationship in this structure and opens up a novel field based on manipulating structural evolution for the design of high‐performance battery cathodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.