Abstract

One main challenge of emerging fungal-based engineered living materials (ELMs) lies in achieving localized multi-material properties in these structures. Although three-dimensional (3D) printing can efficiently vary local composition and properties, it has not yet been demonstrated in fungal-based ELMs. This work thus explores the concept of using nutrients to manipulate fungal foraging behavior in 3D structures fabricated using direct ink writing (DIW) for the next generation of fungal-based ELMs. Using two fungal strains (Pleurotus ostreatus and Ganoderma lucidum), this study shows that the ink formulation used is suitable for both DIW and mycelium growth. Varying the nutrient content allows for either the inhibition or promotion of exploration and bridging of mycelium in different sections, the control of mycelium density in three dimensions and the fabrication of patterned surfaces. There is potential in fabricating patterned fungal-based ELMs and lab-on-a-chip systems to investigate the effects of other substances and microorganisms on the foraging behavior of mycelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.