Abstract

Pyroelectricity plays a crucial role in modern sensors and energy conversion devices. However, obtaining materials with large and nearly constant pyroelectric coefficients over a wide temperature range for practical uses remains a formidable challenge. Attempting to discover a solution to this obstacle, we combined molecular design of labile electronic structure with the crystal engineering of the molecular orientation in lattice. This combination results in electronic pyroelectricity of purely molecular origin. Here, we report a polar crystal of an [FeCo] dinuclear complex exhibiting a peculiar pyroelectric behavior (a substantial sharp pyroelectric current peak and an unusual continuous pyroelectric current at higher temperatures) which is caused by a combination of Fe spin crossover (SCO) and electron transfer between the high-spin Fe ion and redox-active ligand, namely valence tautomerism (VT). As a result, temperature dependence of the pyroelectric behavior reported here is opposite from conventional ferroelectrics and originates from a transition between three distinct electronic structures. The obtained pyroelectric coefficient is comparable to that of polyvinylidene difluoride at room temperature.

Highlights

  • Pyroelectricity plays a crucial role in modern sensors and energy conversion devices

  • At approximately 90 K, an abrupt spin transition from Fe3+LS to Fe3+HS occurs (LS = low spin, HS = high spin) which is followed by a temperatureinduced continuous population change between the two redox isomers, C[Fe3+HS–dhbq3−–Co3+LS] and C[Fe2+HS–dhbq2−–Co3+LS], a phenomenon known as valence tautomerism (VT)

  • These results suggest that the selective crystallization of an [FeCo] heterometallic dinuclear complex occurs

Read more

Summary

Introduction

Pyroelectricity plays a crucial role in modern sensors and energy conversion devices. Pyroelectric effect emerges because of two distinct electronic dynamics, i.e. the change in spin and charge distribution in the polar [FeCo] crystal.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call