Abstract

Developing bifunctional electrocatalyst for seawater splitting remains a persistent challenge. Herein, an approach is proposed through density functional theory (DFT) preanalysis to manipulate electron redistribution in Ni2 P addressed by cation doping and vacancy engineering. The needle-like Fe-doped Ni2 P with P vacancy (Fe-Ni2 Pv) is successfully synthesized on nickel foam, exhibiting a superior bifunctional hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalytic activity for seawater electrolysis in alkaline condition. As a result, bifunctional Fe-Ni2 Pv achieves the industrially required current densities of 1.0 and 3.0 A cm-2 at low voltages of 1.68 and 1.73V, respectively, for seawater splitting at 60 °C in 6.0m KOH circumstances. The theoretical calculation and the experimental results collectively reveal the reasons for the enhancement of catalyst activity. Specifically, Fe doping and P vacancies can accelerate the reconstruction of OER active species and optimize the hydrogen adsorption free energy (ΔGH* ) for HER. In addition, the active sites of Fe-Ni2 Pv are identified, where P vacancies greatly improve the electrical conductivity and Ni sites are the dominant OER active centers, meanwhile Fe atoms as active centers for the HER. The study provides a deep insight into the exploration for the enhancement of activity of nickel-based phosphide catalysts and the identification of their real active centers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call