Abstract
Quantum correlations in observables of multiple systems not only are of fundamental interest, but also play a key role in quantum information processing. As a signature of these correlations, the violation of Bell inequalities has not been demonstrated with multipartite hybrid entanglement involving both continuous and discrete variables. Here we create a five-partite entangled state with three superconducting transmon qubits and two photonic qubits, each encoded in the mesoscopic field of a microwave cavity. We reveal the quantum correlations among these distinct elements by joint Wigner tomography of the two cavity fields conditional on the detection of the qubits and by test of a five-partite Bell inequality. The measured Bell signal is 8.381±0.038, surpassing the bound of 8 for a four-partite entanglement imposed by quantum correlations by 10 standard deviations, demonstrating the genuine five-partite entanglement in a hybrid quantum system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.