Abstract

We employed the self-consistent Bogoliubov–de Gennes equations to explore the states of chiral Majorana mode in quantum anomalous Hall insulators in proximity to a superconductor, leading to the development of an extensive topological phase diagram. Our investigation focused on how an additional potential affects the separation of chiral Majorana modes across different phase conditions. We substantiated our findings by examining the zero-energy Local Density of States spectrum and the probability distribution of the chiral Majorana modes. We established the universality of chiral Majorana mode separation by applying an additional potential. This finding serves as a vital resource for future endeavors aimed at controlling and detecting these particles, thereby contributing to the advancement of quantum computing and condensed matter physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.