Abstract
Copper-deficient Cu2-xS nanoparticles (NPs) are extensively exploited as a superior cation exchange (CE) template to yield sophisticated nanostructures. Recently, it has been discovered that their CE reactions can be facilely manipulated by copper vacancy density, morphology, and NP size. However, the structural similarity of usually utilized Cu2-xS somewhat limits the manipulation of the CE reactions through the factor of crystal structure because it can strongly influence the process of the reaction. Herein, we report a methodology of crystal structure transformation to manipulate the CE reactions. Particularly, roxbyite Cu1.8S nanodisks (NDs) were converted into solid wurtzite CdS NDs and Janus-type Cu1.94S/CdS NDs by a "full"/partial CE reaction with Cd2+. Afterward, the roxbyite Cu1.8S were pseudomorphically transformed into covellite CuS NDs. Unlike Cu1.8S, the CuS was scarcely exchanged because of the unique disulfide (S-S) bonds and converted into hollow wurtzite CdS under a more reactive condition. The S-S bonds were gradually split and CuS@CdS core@shell-type NDs were generated. Therefore, our findings in the present study provide not only a versatile technique to manipulate CE reactions in Cu2-xS NPs but also a better comprehension of their reaction dynamics and pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.