Abstract

ABSTRACTCreation of nanoscale building blocks with various sizes and shapes are critical for the progress of nanotechnology. Silicon carbide nanostructures attract interest due to their applications in optoelectronic devices, sensors, high-power/high temperature electronics, and thermoelectrics. This paper presents a detailed study of SiC nanowire morphology change through gas flow dynamics. SiC nanowire synthesis has been carried out by chemical vapor deposition using hexamethyldisilane (HMDS) as source material on SiO2/Si substrate. The study has been limited to several catalyst materials, including nickel (nanoparticle and thin film), cobalt nanoparticles, and gold thin film. The growth runs have been carried out at 1000oC under H2 as carrier gas with flow rates varying from 100 to1000 sccm. A significant change in morphology has been observed. At high flow rates, the nanowires are highly curved and contain sharp kinks, while the nanowires are straight and longer at lower flow rates. Moreover, it is important to note that the flow rate has influenced the nanowire growth-yield significantly. As small as 8nm-diameter SiC nanowire has been observed, as determined by transmission electron microscopy (TEM). These findings will help in controlling the morphology of the SiC nanowires. The fabricated nanowires have also been characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.