Abstract

We investigate the wave transmissions through an index-near-zero (INZ) or epsilon-near-zero (ENZ) metamaterial containing various kinds of coated cylindrical defects. We find that thin coatings of the defects can dramatically change the transmission behaviors. For example, perfect magnetic conductor (PMC) defects embedded in an INZ or ENZ metamaterial yield total reflections for transverse magnetic polarized waves (Hao et al., Appl Phys Lett 96:101109, 2010). However, if the PMC defects are coated with dielectric shells, total transmissions could be achieved by tuning their permittivity values or geometric sizes. The permittivity differences of dielectric shells for total reflections and transmissions in the INZ or ENZ metamaterial could be very small, implying potential applications, such as ultrasensitive sensors and switches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.