Abstract

Consider the class of n-dimensional Riemannian spin manifolds with bounded sectional curvatures and bounded diameter, and almost non-negative scalar curvature. Let r = 1 if n = 2,3 and r = 2[n/2]-1 + 1 if n ≥ 4. We show that if the square of the Dirac operator on such a manifold has r small eigenvalues, then the manifold is diffeomorphic to a nilmanifold and has trivial spin structure. Equivalently, if M is not a nilmanifold or if M is a nilmanifold with a non-trivial spin structure, then there exists a uniform lower bound on the r-th eigenvalue of the square of the Dirac operator. If a manifold with almost non-negative scalar curvature has one small Dirac eigenvalue, and if the volume is not too small, then we show that the metric is close to a Ricci-flat metric on M with a parallel spinor. In dimension 4 this implies that M is either a torus or a K3-surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call