Abstract

The first example of a compact manifold admitting both complex and symplectic structures but not admitting a Kahler structure is the renowned Kodaira–Thurston manifold. We review its construction and show that this paradigm is very general and is not related to the fundamental group. More specifically, we prove that the simply connected eight-dimensional compact manifold of Fernandez and Munoz (Ann Math (2), 167(3):1045–1054, 2008) admits both symplectic and complex structures but does not carry Kahler metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.