Abstract

Manifold-ranking is a powerful method in semi-supervised learning, and its performance heavily depends on the quality of the constructed graph. In this paper, we propose a novel graph structure named k-regular nearest neighbor (k-RNN) graph as well as its constructing algorithm, and apply the new graph structure in the framework of manifold-ranking based retrieval. We show that the manifold-ranking algorithm based on our proposed graph structure performs better than that of the existing graph structures such as k-nearest neighbor (k-NN) graph and connected graph in image retrieval, 2D data clustering as well as 3D model retrieval. In addition, the automatic sample reweighting and graph updating algorithms are presented for the relevance feedback of our algorithm. Experiments demonstrate that the proposed algorithm outperforms the state-of-the-art algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.