Abstract

Subdivision schemes have become an important tool for approximation of manifold-valued functions. In this paper, we describe a construction of manifold-valued subdivision schemes for geodesically complete manifolds. Our construction is based upon the adaptation of linear subdivision schemes using the notion of repeated binary averaging, where as a repeated binary average we propose to use the geodesic inductive mean. We derive conditions on the adapted schemes which guarantee convergence from any initial manifold-valued sequence. The definition and analysis of convergence are intrinsic to the manifold. The adaptation technique and the convergence analysis are demonstrated by several important examples of subdivision schemes. Two numerical examples visualizing manifold-valued curves generated by such schemes are given together with a link to the code that generated them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.