Abstract
Saliency detection is used to identify the most important and informative area in a scene, and it is widely used in various vision tasks, including image quality assessment, image matching, and object recognition. Manifold ranking (MR) has been used to great effect for the saliency detection, since it not only incorporates the local spatial information but also utilizes the labeling information from background queries. However, MR completely ignores the feature information extracted from each superpixel. In this paper, we propose an MR-based matrix factorization (MRMF) method to overcome this limitation. MRMF models the ranking problem in the matrix factorization framework and embeds query sample labels in the coefficients. By incorporating spatial information and embedding labels, MRMF enforces similar saliency values on neighboring superpixels and ranks superpixels according to the learned coefficients. We prove that the MRMF has good generalizability, and develops an efficient optimization algorithm based on the Nesterov method. Experiments using popular benchmark data sets illustrate the promise of MRMF compared with the other state-of-the-art saliency detection methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.