Abstract

Although deep convolutional neural network based face recognition system has achieved remarkable success, it is susceptible to adversarial images: carefully constructed imperceptible perturbations can easily mislead deep neural networks. A recent study has shown that in addition to regular off-manifold adversarial images, there are also adversarial images on the manifold. In this paper, we propose Adversarial Variational AutoEncoder (A-VAE), a novel framework to tackle both types of attacks. We hypothesize that both off-manifold and on-manifold attacks move the image away from the high probability region of image manifold. We utilize variational autoencoder (VAE) to estimate the lower bound of the log-likelihood of image and explore to project the input images back into the high probability regions of image manifold again. At inference time, our model synthesizes multiple similar realizations of a given image by random sampling, then the nearest neighbor of the given image is selected as the final input of the face recognition model. As a preprocessing operation, our method is attack-agnostic and can adapt to a wide range of resolutions. The experimental results on LFW demonstrate that our method achieves state-of-the-art defense success rate against conventional off-manifold attacks such as FGSM, PGD, and C&W under both grey-box and white-box settings, and even on-manifold attack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.