Abstract

Information coming from social media is vital to the understanding of the dynamics involved in multiple events such as terrorist attacks and natural disasters. With the spread and popularization of cameras and the means to share content through social networks, an event can be followed through many different lenses and vantage points. However, social media data present numerous challenges, and frequently it is necessary a great deal of data cleaning and filtering techniques to separate what is related to the depicted event from contents otherwise useless. In a previous effort of ours, we decomposed events into representative components aiming at describing vital details of an event to characterize its defining moments. However, the lack of minimal supervision to guide the combination of representative components somehow limited the performance of the method. In this paper, we extend upon our prior work and present a learning-from-data method for dynamically learning the contribution of different components for a more effective event representation. The method relies upon just a few training samples (few-shot learning), which can be easily provided by an investigator. The obtained results on real-world datasets show the effectiveness of the proposed ideas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.