Abstract

In this work we apply manifold learning to biophysical modeling of cardiac contraction with the aim of estimating material parameters characterizing myocardial stiffness and contractility. The set of cardiac cycle simulations spanning the parameter space of myocardial stiffness and contractility is used to create a manifold structure based on the motion pattern of the left ventricle endocardial surfaces. First, we assess the proposed method by using synthetic data generated by the model specifically to test our approach with the known ground truth parameter values. Then, we apply the method on cardiac magnetic resonance imaging (MRI) data of two healthy volunteers. The post-processed cine MRI for each volunteer were embedded into the manifold together with the simulated samples and the global parameters of contractility and stiffness for the whole myocardium were estimated. Then, we used these parameters as an initialization into an estimator of regional contractilities based on a reduced order unscented Kalman filter. The global values of stiffness and contractility obtained by manifold learning corrected the model in comparison to a standard model calibration by generic parameters, and a significantly more accurate estimation of regional contractilities was reached when using the initialization given by manifold learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.