Abstract

Here, we present a new approach based on manifold learning for inverse design and knowledge discovery in nanophotonics. We present the unique capabilities of manifold learning approaches for reducing the dimensionality of the high-dimensional relationships in photonic nanostructures. We show how this can help to understand the underlying patterns in the responses of such nanostructures. Such a visualization in the low-dimensional space enables knowledge discovery and studying the underlying physics of nanostructures and can facilitate the inverse design. We also use this method to study the role of the design parameters and design a class of nanostructure while reducing the design complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.