Abstract

Large-scale multiobjective optimization problems (LSMOPs) are characterized as optimization problems involving hundreds or even thousands of decision variables and multiple conflicting objectives. To solve LSMOPs, some algorithms designed a variety of strategies to track Pareto-optimal solutions (POSs) by assuming that the distribution of POSs follows a low-dimensional manifold. However, traditional genetic operators for solving LSMOPs have some deficiencies in dealing with the manifold, which often results in poor diversity, local optima, and inefficient searches. In this work, a generative adversarial network (GAN)-based manifold interpolation framework is proposed to learn the manifold and generate high-quality solutions on the manifold, thereby improving the optimization performance of evolutionary algorithms. We compare the proposed approach with several state-of-the-art algorithms on various large-scale multiobjective benchmark functions. The experimental results demonstrate that significant improvements have been achieved by the proposed framework in solving LSMOPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.