Abstract

Adversarial attacks on 3D point clouds often exhibit unsatisfactory imperceptibility, which primarily stems from the disregard for manifold-aware distortion, i.e., distortion of the underlying 2-manifold surfaces. In this paper, we develop novel manifold constraints to reduce such distortion, aiming to enhance the imperceptibility of adversarial attacks on 3D point clouds. Specifically, we construct a bijective manifold mapping between point clouds and a simple parameter shape using an invertible auto-encoder. Consequently, manifold-aware distortion during attacks can be captured within the parameter space. By enforcing manifold constraints that preserve local properties of the parameter shape, manifold-aware distortion is effectively mitigated, ultimately leading to enhanced imperceptibility. Extensive experiments demonstrate that integrating manifold constraints into conventional adversarial attack solutions yields superior imperceptibility, outperforming the state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.