Abstract

A sparsity-based model has led to interesting results in hyperspectral image (HSI) classification. Sparse representation from a test sample is used to identify the class label. However, an $\ell_{1}$ -based sparse algorithm sometimes yields unstable sparse representation. Inspired by recent progress in manifold learning, two manifold-based sparse representation algorithms are proposed to exploit the local structure of the test samples in corresponding sparse representations for enforcing smoothness across neighboring samples' sparse representations. Using techniques from regularization and local invariance, two manifold-based regularization terms are incorporated into the $\ell_{1}$ -based objective function. Extensive experiments show that our proposed algorithms obtain excellent classification performance on three classic HSIs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.