Abstract

The relativistic equilibrium velocity distribution plays a key role in describing several high-energy and astrophysical effects. Recently, computer simulations favored Jüttner's as the relativistic generalization of Maxwell's distribution for d=1,2,3 spatial dimensions and pointed to an invariant temperature. In this work, we argue an invariant temperature naturally follows from manifest covariance. We present a derivation of the manifestly covariant Jüttner's distribution and equipartition theorem. The standard procedure to get the equilibrium distribution as a solution of the relativistic Boltzmann's equation, which holds for dilute gases, is here adopted. However, contrary to previous analysis, we use Cartesian coordinates in d+1 momentum space, with d spatial components. The use of the multiplication theorem of Bessel functions turns crucial to regain the known invariant form of Jüttner's distribution. Since equilibrium kinetic-theory results should agree with thermodynamics in the comoving frame to the gas the covariant pseudonorm of a vector entering the distribution can be identified with the reciprocal of temperature in such comoving frame. Then by combining the covariant statistical moments of Jüttner's distribution a form of the equipartition theorem is advanced which also accommodates the invariant comoving temperature and it contains, as a particular case, a previous not manifestly covariant form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.