Abstract
In the calculation of the anomalous magnetic moment of ${W}^{\ifmmode\pm\else\textpm\fi{}}$ bosons, we discuss vector anomalies occurring in the fermion loop that spoil the predictive power of the theory. While the previous analyses were limited to using essentially the manifestly covariant dimensional regulation method, we extend the analysis using both the manifestly covariant formulation and the light-front Hamiltonian formulation with several different regularization methods. We find that the zero-mode contribution to the helicity zero-to-zero amplitude for the ${W}^{\ifmmode\pm\else\textpm\fi{}}$ gauge bosons is crucial for the correct light-front (LF) calculations. Further, we confirm that the anomaly-free condition found in the analysis of the axial anomaly can also get rid of the vector anomaly in light-front dynamics (LFD) as well as in the manifestly covariant calculations. Our findings in this work may provide a bottom-up fitness test not only to the LF calculations but also to the theory itself, whether it is any extension of the Standard Model or an effective field theoretic model for composite systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.