Abstract

The degree to which the interpretation of the existence of a pseudogap and a superconducting gap in cuprates on the basis t-t′-U the Hubbard-model corresponds to the data obtained from the photoemission spectra is discussed. The pseudogap in the model is interpreted as the work function of electrons from the insulating parts of the Brillouin zone boundary. On this basis one can explain the angle dependence of the gap measured in the photoemission spectra and its evolution on changes in doping and temperature. In particular, an explanation is found for the decline in the ratio of the angle derivative of the gap near the site, v Δ = (1/2)dΔ(ϕ)/dϕ, to the maximum value of the gap, Δmax, with decreasing doping. That behavior and the different temperature dependence of the gap Δ(ϕ) for different angles are due to the presence of two contributions to Δ with different anisotropies—from the pseudogap and from the superconducting gap. The calculation of the spectral functions confirms the sharp Fermi boundary observed in the direction and the smeared edge of the distribution along the path Γ(0, 0)-M(π, 0)-Y(π, π).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.