Abstract
We study disordered XXZ spin chains in the Ising phase exhibiting droplet localization, a single cluster localization property we previously proved for random XXZ spin chains. It holds in an energy interval $I$ near the bottom of the spectrum, known as the droplet spectrum. We establish dynamical manifestations of localization in the energy window $I$, including non-spreading of information, zero-velocity Lieb-Robinson bounds, and general dynamical clustering. Our results do not rely on knowledge of the dynamical characteristics of the model outside the droplet spectrum. A byproduct of our analysis is that for random XXZ spin chains this droplet localization can happen only inside the droplet spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.