Abstract
Possible liver damage induced by chemicals or drugs must be detected early during drug development or industrial exposure, although damage is still difficult to predict, especially when immunotoxicity is involved. Liver toxicity may result from cytolysis, steatosis, cholestasis, phospholipidosis, or vascular lesions, most the outcome of a disadvantageous balance between chemicals or metabolites vs protective mechanisms, resulting from chemical dosage, genetic factors, or the immunoallergic status of the patient. Drug metabolism, lipid peroxidation, and thiol oxidation are frequently involved in liver toxicities. Classical guidelines in toxicology propose many methods for liver toxicity assessment: histology; chemical changes in hepatic tissue (lipids, glutathione, enzymes); physiological changes in biosynthesis (proteins, glycoproteins); excretion function (fructose); drug metabolism; and concentrations of related enzymes (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and gamma-glutamyltransferase) in blood. In vitro studies in human or animal hepatocytes or tumor-derived cell lines are useful in detecting hepatocellular lesions by cell viability, glutathione concentration, amount of lactate dehydrogenase released, cellular ATP, morphology (blebs), and drug metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Clinical Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.